Updates Hier | Bilder Hier | Videos Hier

seit 30.7.2017 PAPA und brauche Hilfe in Form eines entspannten Moderators
3.2.2017 - Spendenbutton neu und Benutzerkarte - viel Spass damit
9.2.2017 - danke Gennaro ;) | 10.2.17 - danke cruisen ;) | 19.2.17 - danke Kringla - cool |27.2.17 - danke Ch.Bacca ...hammer | 28.2.17 danke 2halves1bike - uff - vielen Dank | 11.7.17 - voll toll Michael T. (user ?) ;-) | 5.1.18 - danke torsten

Was bedeutet "Optimierung"?

Der Smalltalk-Bereich. Alles was NICHT mit Fahr/Falträdern zu tun hat
derMac
Beiträge: 2072
Registriert: Di 17. Jul 2012, 16:01
Faltrad 1: Dahon Dash P18
Faltrad 2: Giant Halfway
Faltrad 3: Bike Friday Family T
Geschlecht: m
Geburtsjahr: 1970
Status: FALTradfahrer
Wohnort: Grünes Herz Deutschlands 650 hm

Re: Was bedeutet "Optimierung"?

Beitrag von derMac » Fr 12. Sep 2014, 17:33

Pibach hat geschrieben:
derSammy hat geschrieben:Das Finden einer solchen besseren Konfiguration kann man gern als Verbessern bezeichnen. Nicht aber Optimieren, denn mit dem Finden eines Optimums hat das nichts zu tun. Wesen einer Halbordnung ist nämlich, dass man nicht alle Elemente vergleichen kann.
Die fehlende klare Vergleichbarkeit einzelner Kandidaten ist aber auch genau typisch in einer Optimierung.
:D

Mac, endlich Seite 4 erreicht

derSammy
Beiträge: 40
Registriert: Fr 29. Aug 2014, 13:15
Geschlecht: m
Status: Suchender
Wohnort: Dresden

Re: Was bedeutet "Optimierung"?

Beitrag von derSammy » Sa 13. Sep 2014, 01:48

Pibach hat geschrieben:
derSammy hat geschrieben:Das Finden einer solchen besseren Konfiguration kann man gern als Verbessern bezeichnen. Nicht aber Optimieren, denn mit dem Finden eines Optimums hat das nichts zu tun. Wesen einer Halbordnung ist nämlich, dass man nicht alle Elemente vergleichen kann.
Die fehlende klare Vergleichbarkeit einzelner Kandidaten ist aber auch genau typisch in einer Optimierung.
Nö, wenn die Zielfunktion nicht klar benannt werden kann, würde ich nicht von Optimierung sprechen. Und dies ist genau der Kern der Diskussion, um den es hier seit 4 Seiten geht und woran sich Mac (nicht nur in deinem) Sprachgebrauch stört. Was spricht dagegen einerseits von optimieren (im Sinne von Ergebnis kann nicht verbessert werden) oder andererseits von verbessern (Ergebnis ist jetzt besser, aber es kann nicht spezifiziert werden, in welchem Sinne es "optimal" ist) zu sprechen?

Motte
Beiträge: 4965
Registriert: Sa 22. Aug 2009, 19:27
Faltrad 1: Birdy Grey
Faltrad 2: Tern Verge S27H
Faltrad 3: Tern Link P24
Geschlecht: m
Geburtsjahr: 1958
Status: FALTradfahrer
Wohnort: Essen - die Kulturhauptstadt

Re: Was bedeutet "Optimierung"?

Beitrag von Motte » Sa 13. Sep 2014, 08:53

Nun ja, in der Diskussion hat sich der Begriff ja recht schnell auf die enge mathematische Sicht begrenzt.
Im sprachlichen Alltag dürfte sich das längst erledigt haben, weil dort zwischen optimieren und verbessern kein Unterschied gemacht wird. Das ist auch in Ordnung, weil man das Ziel desjenigen der da "verbessert" i.A. nicht kennt. Wenn er anstrebt mit seinem Werk "der Beste" zu sein, wäre optimieren sicher als feine Unterscheidung angebracht. Wenn er lediglich ein gutes Werk zum Ziel hat, dann eben verbessern.

Aber wir sagen auch solchen "Unsinn" wie "das beste Faltrad aller Zeiten" und wissen gar nicht, was die Zukunft bringt. Der Beste (Optimus) kann ja immer nur im Hier und Jetzt gemeint sein.

Dem Schweizer Thomas Lösch alias Velowerk würde ich schon abnehmen, dass er gern das "optimale Faltrad" bauen möchte und beständig darauf hin arbeitet.
Tern wird als Firma eher den Massenmarkt anpeilen und damit zufrieden sein "gute Falträder" zu bauen. Mal davon abgesehen, dass vom reinen Sprachgebrauch nur ein Faltrad das beste Faltrad (also das optimale) sein kann. Alle anderen haben dann vielleicht nur ihr Bestes gegeben.

derMac
Beiträge: 2072
Registriert: Di 17. Jul 2012, 16:01
Faltrad 1: Dahon Dash P18
Faltrad 2: Giant Halfway
Faltrad 3: Bike Friday Family T
Geschlecht: m
Geburtsjahr: 1970
Status: FALTradfahrer
Wohnort: Grünes Herz Deutschlands 650 hm

Re: Was bedeutet "Optimierung"?

Beitrag von derMac » Sa 13. Sep 2014, 10:51

Motte hat geschrieben:Nun ja, in der Diskussion hat sich der Begriff ja recht schnell auf die enge mathematische Sicht begrenzt.
Zumindest ich hab eigentlich versucht, möglichst unmathematisch zu sein. Bin auch kein Mathematiker.
Im sprachlichen Alltag dürfte sich das längst erledigt haben, weil dort zwischen optimieren und verbessern kein Unterschied gemacht wird. Das ist auch in Ordnung, weil man das Ziel desjenigen der da "verbessert" i.A. nicht kennt. Wenn er anstrebt mit seinem Werk "der Beste" zu sein, wäre optimieren sicher als feine Unterscheidung angebracht. Wenn er lediglich ein gutes Werk zum Ziel hat, dann eben verbessern.
Das Problem ist Alltag besteht nicht zwischen "ich bin mit optimieren beschäftigt" und "ich bin mit verbessern beschäftigt". Da ist der Unterschied zumindest nicht so dramatisch, da kann man höchstens darüber diskutieren, ob die verwendete Vorgehensweise überhaupt besonders geeignet ist, um ein Optimum zu finden. Das wirkliche Problem besteht in "ich habe optimiert" zu "ich habe verbessert". Wenn allerdings schon jeder jedes Vorgehen optimieren nennt, wird er sehr wahrscheinlich auch jedes Ergebnis Optimum nennen. Und deshalb meckere ich da.
Aber wir sagen auch solchen "Unsinn" wie "das beste Faltrad aller Zeiten" und wissen gar nicht, was die Zukunft bringt. Der Beste (Optimus) kann ja immer nur im Hier und Jetzt gemeint sein.
Genau und auch im hier und jetzt ist es fast immer Unsinn.
Dem Schweizer Thomas Lösch alias Velowerk würde ich schon abnehmen, dass er gern das "optimale Faltrad" bauen möchte und beständig darauf hin arbeitet.
Ich würde ihm aber nie abnehmen, dass er das geschafft hat. Ich glaube nicht einmal, dass seine Vorgehensweise geeignet ist, in endlicher Zeit irgendein Optimum zu finden. Trotzdem findet er teilweise sehr sinnvolle Lösungen. Es muss auch gar nicht alles "optimal" sein.

Mac

Pibach
Moderator
Beiträge: 8065
Registriert: Do 6. Aug 2009, 00:09
Faltrad 1: Dahon Mu Ex
Faltrad 2: Dahon Mu Singlespeed
Faltrad 3: Gotway MCM V3
Geschlecht: m
Geburtsjahr: 1968
Status: FALTradfahrer
Wohnort: Berlin

Re: Was bedeutet "Optimierung"?

Beitrag von Pibach » Sa 13. Sep 2014, 14:34

derSammy hat geschrieben: Nö, wenn die Zielfunktion nicht klar benannt werden kann, würde ich nicht von Optimierung sprechen.
Und dies ist genau der Kern der Diskussion, um den es hier seit 4 Seiten geht und woran sich Mac (nicht nur in deinem) Sprachgebrauch stört.
Es ist ein Unterschied, ob man das Optimum kennt, oder nur eine Bewertungsfunktion, die einen bei der Suche nach dem Optimum leitet.
Wenn man das Optimum kennt, gibt es schon mal sicher keinen Optimierungsprozess, der wäre ja schon direkt fertig. Und ab gewisser Komplexität, für die der Begriff ja gedacht ist, gibt es kein Optimum. Das gilt gesichert nach Grundlagen der Komplexitätstheorie. Das sollte hoffentlich klar sein.

Es gibt aber auch sehr viele Optimierungsprozesse, wo die Bewertungsfunktion nicht so klar ist. Z.B. natürliche Evolution, Geschäftsmodelloptimierung, Prozessoptimierung, usw. Man versucht das irgendwie auf eine mathematische Funktion abzubilden, z.B. nach monetären Kriterien, muss aber dann teilweise nachkorrigieren, weil es nicht passte, z.B. Qualitätskriterien und langfristige Ziele nicht berücksichtigt wurden. Im Grunde ist das ein Problem, die Bewertung explizit zu machen, implizit ist sie u.U. schon vorhanden, aber nicht bewusst explizit formuliert oder mit den Mitteln der Mathematik nicht (so leicht) formulierbar.

Aus einer anderen Sicht ist die Bewertung a posteriori zwar immer möglich, aber nicht zum Zeitpunkt des Optimierungsprozesses. Also z.B. beim Schach weiß man erst, wie gut ein Zug war, wenn man alle Folgezüge und Reaktionsvarianten des Gegners durchgerechnet hat, was ja bekanntlich nicht zu Lebzeiten des Universums beendet sein wird. Sowas wie Tempovorteil, Figurwerte, Mittendominanz usw. sind Bewertungsfunktionen, die einen bei der Suche unterstützen sollen. Die sind aber nicht sicher, d.h. es könnte sein, dass sie einen manchmal falsch leiten, oder dass jemand mal geeignetere Bewertungsfunktionen ermittelt.
Was spricht dagegen einerseits von optimieren (im Sinne von Ergebnis kann nicht verbessert werden) oder andererseits von verbessern (Ergebnis ist jetzt besser, aber es kann nicht spezifiziert werden, in welchem Sinne es "optimal" ist) zu sprechen?
Wenn man das Optimum finden kann, war die Situation nicht komplex. Z.B. TickTackToe ist vollständig berechenbar. Schach aber nicht. Daher ist für TickTackToe immer der optimale Zug bekannt, für Schach nicht. Praktisch alle Probleme, die uns im Leben interessieren, sind viel komplexer als Schach, und NP-vollständig, also nicht effizient lösbar. D.h. de facto ist kein Optimum auffindbar zu Lebzeiten des Universums. Daraus folgt, man kann immer beliebig lange weiter optimieren und sich dem Optimum beliebig nähern ohne es je erreichen zu können. Selbst wenn die Rahmenbedingungen statisch wären (was sie natürlich nicht sind).

derSammy
Beiträge: 40
Registriert: Fr 29. Aug 2014, 13:15
Geschlecht: m
Status: Suchender
Wohnort: Dresden

Re: Was bedeutet "Optimierung"?

Beitrag von derSammy » Sa 13. Sep 2014, 16:16

Pibach hat geschrieben:
derSammy hat geschrieben: Nö, wenn die Zielfunktion nicht klar benannt werden kann, würde ich nicht von Optimierung sprechen.
Und dies ist genau der Kern der Diskussion, um den es hier seit 4 Seiten geht und woran sich Mac (nicht nur in deinem) Sprachgebrauch stört.
Es ist ein Unterschied, ob man das Optimum kennt, oder nur eine Bewertungsfunktion, die einen bei der Suche nach dem Optimum leitet.
Wenn man das Optimum kennt, gibt es schon mal sicher keinen Optimierungsprozess, der wäre ja schon direkt fertig. Und ab gewisser Komplexität, für die der Begriff ja gedacht ist, gibt es kein Optimum. Das gilt gesichert nach Grundlagen der Komplexitätstheorie. Das sollte hoffentlich klar sein.
Nö, ist mir ganz und gar nicht klar. Was bitte ist die Komplexitätstheorie?
Und ich tue mich auch schwer mit dem Begriff "Optimierungsprozess". Optimieren ist meines erachtens eher einer statische Sache, keine dynamische. Das Optimimum berechne ich oder mache von mir aus verschiedene Versuche, bei denen ich die optimale Konfiguration ermittle. Ein wirklicher Prozess ist das nicht, da ich alle Konfigurationen gleichzeitig testen könnte.
Was mir klar ist: Einerseits gibt es häufig verschiedene Kriterien, die man verbessern möchte, allen gleichzeig kann man in der Regel nicht gerecht werden. Aber hier würde ich wie gesagt nicht von Optimierung sprechen.
Und andererseits kann es sowohl aus mathematischer Sicht, aber auch ganz praktisch vorkommen, dass eine optimale Konfiguration nicht existiert (weil im theoretischen Optimum z.B. eine Singularität vorliegt). Das Finden einer "fast" optimalen Konfiguration kann ich hier noch als Optimierung verstehen, aber ich glaube eher weniger, dass du an diesen Fall gedacht hast.
Pibach hat geschrieben: Es gibt aber auch sehr viele Optimierungsprozesse, wo die Bewertungsfunktion nicht so klar ist. Z.B. natürliche Evolution, Geschäftsmodelloptimierung, Prozessoptimierung, usw. Man versucht das irgendwie auf eine mathematische Funktion abzubilden, z.B. nach monetären Kriterien, muss aber dann teilweise nachkorrigieren, weil es nicht passte, z.B. Qualitätskriterien und langfristige Ziele nicht berücksichtigt wurden. Im Grunde ist das ein Problem, die Bewertung explizit zu machen, implizit ist sie u.U. schon vorhanden, aber nicht bewusst explizit formuliert oder mit den Mitteln der Mathematik nicht (so leicht) formulierbar.
Du listest sehr schön auf, wo ich den Begriff der Optimierung als ziemlich deplaziert betrachte. Ein Geschäftsmodell kann ich nicht optimieren. Ein Geschäftsmodell ist ein theoretisches Konzept, welches Dinge beinhaltet, die per se erstmal gar nicht in Zahlen abzubilden sind.
Natürliche Evolution ist im besten Sinne ein dynamischer Prozess, keine Optimierung (man beachte übrigens die tautologie in der ganzen Geschichte -> Was gilt als "besser angepasst"? Na letztlich dass, was überlebt hat. Und was überlebt? Na das was "besser angepasst" ist. So kann man die Theorie überhaupt nicht widerlegen...).
Einen Prozess kann ich auch nur hinsichtlich eines Kriteriums (und womöglich bezüglich Rahmenparameter) optimieren.

Mit der unbekannten Zielfunktion gebe ich dir recht und erachte es als eines der großen Übel der BWLer und Berater, alle möglichen Dinge immer bezüglich irgendwas "optimieren" zu wollen, indem man z.B. alles in Zahlen umrechnet. Währung ist eine eindimensionale Achse, aber unsere Welt ist wesentlich komplexer. Man kann eben nicht alles in einen einzelnen Score umwandelnt und dann optimieren. Also man kann schon, aber das ist quasi nie sinnvoll.
Pibach hat geschrieben: Aus einer anderen Sicht ist die Bewertung a posteriori zwar immer möglich, aber nicht zum Zeitpunkt des Optimierungsprozesses.
Nö, die Zielfunktion ändert sich durch die Optimierung nicht. Ob eine Konfiguration optimal ist, ist vorher wie hinterher klar.
Pibach hat geschrieben: Also z.B. beim Schach weiß man erst, wie gut ein Zug war, wenn man alle Folgezüge und Reaktionsvarianten des Gegners durchgerechnet hat, was ja bekanntlich nicht zu Lebzeiten des Universums beendet sein wird. Sowas wie Tempovorteil, Figurwerte, Mittendominanz usw. sind Bewertungsfunktionen, die einen bei der Suche unterstützen sollen. Die sind aber nicht sicher, d.h. es könnte sein, dass sie einen manchmal falsch leiten, oder dass jemand mal geeignetere Bewertungsfunktionen ermittelt.
Deshalb sollte man sauber unterscheiden, nach welchen Kriterien man einen Zug optimal nennen will. Theoretisch ist klar, dass es beim Schach einen optimalen Algorithmus geben muss, d.h. wenn beide Spieler den kennen, endet das Spiel immer als Sieg für Weiß, als Sieg für Schwarz oder als Remis. Wäre der Algorithmus bekannt, würden die Kriterien wie Tempovorteil, Figurwerte, etc. hinfällig. Es ist schlicht klar, welchen Zug man jeweils auf den Zug des Gegners erwiedern muss. Da dies eine theoretische Überlegung ist und du bereits dargestellt hast, dass es beim Schach derart viele Spielverläufe gibt, die man auch mit Rechentechnik nie komplett wird überblicken können, so behelfen sich Schachcomputer mit anderen Mitteln und beziehen die genannten Kriterien in irgendeiner Art und Weise mit ein. Hinsichtlich der im Schachcomputer hinterlegten Funktion ist dann der vorgeschlagene Zug optimal. Allerdings kommen unterschiedliche Schachcomputer, mit anderen Bewertungen des "optimalen Zuges" (im Sinne ihrer anderen hinterlegten Funktion) natürlich zu unterschiedlichen Ergebnissen. Die Frage, welche Bewertungsfunktion in einem Schachcomputer "optimal" ist, ist eigentlich obsolet. Optimal wäre nur die Funktion, die stets den "optimalen Zug" nach der abstrakten Theorie liefern würde. Alle anderen Bewertungsfunktionen sind schlicht unvollkommen.
Pibach hat geschrieben:
Was spricht dagegen einerseits von optimieren (im Sinne von Ergebnis kann nicht verbessert werden) oder andererseits von verbessern (Ergebnis ist jetzt besser, aber es kann nicht spezifiziert werden, in welchem Sinne es "optimal" ist) zu sprechen?
Wenn man das Optimum finden kann, war die Situation nicht komplex. Z.B. TickTackToe ist vollständig berechenbar. Schach aber nicht. Daher ist für TickTackToe immer der optimale Zug bekannt, für Schach nicht. Praktisch alle Probleme, die uns im Leben interessieren, sind viel komplexer als Schach, und NP-vollständig, also nicht effizient lösbar. D.h. de facto ist kein Optimum auffindbar zu Lebzeiten des Universums. Daraus folgt, man kann immer beliebig lange weiter optimieren und sich dem Optimum beliebig nähern ohne es je erreichen zu können. Selbst wenn die Rahmenbedingungen statisch wären (was sie natürlich nicht sind).
Dem möchte ich entschieden widersprechen! Es gibt durchaus Optimierungsprobleme, die höchstkomplex sind, wo man das Optimum aber berechnen kann. Es gibt weit mehr Optimierungsprobleme als nur in der Spieltheorie. Aber wenn wir schon dabei bleiben: Wenn ich recht informiert bin, ist "4 gewinnt" berechenbar - dort die optimale Strategie zu finden ist aber auch leicht einsichtig nicht elementar.

Bei der Frage um NP-Vollständigkeit ist zunächst nur für Entscheidungsprobleme definiert (Optimierungsprobleme sind wesentlich allgemeiner) und dabei geht es im Wesentlichen um die numerische Berechenbarkeit des Optimums. Auch wenn ein Problem NP-vollständig ist, so mag es (auch praktisch) dennoch berechenbar sein - zumindest solange das Problem "überschaubar" klein ist. Das alles hat aber nichts damit zu tun, ob man von Optimierung sprechen sollte oder nicht. NP-vollständigen Problemen liegt eine Zielfunktion zu Grunde und das Finden des Optimums würde ich als Optimierung bezeichnen. Das hat aber mit den Wischiwaschi-Bezeichungen wie Prozess- oder Geschäftsmodelloptimierung nichts zu tun.

Pibach
Moderator
Beiträge: 8065
Registriert: Do 6. Aug 2009, 00:09
Faltrad 1: Dahon Mu Ex
Faltrad 2: Dahon Mu Singlespeed
Faltrad 3: Gotway MCM V3
Geschlecht: m
Geburtsjahr: 1968
Status: FALTradfahrer
Wohnort: Berlin

Re: Was bedeutet "Optimierung"?

Beitrag von Pibach » Sa 13. Sep 2014, 19:03

derSammy hat geschrieben: Ein wirklicher Prozess ist das nicht, da ich alle Konfigurationen gleichzeitig testen könnte.
Kommt drauf an. Sehr typisch bei einer Optimierung ist eben, dass die Bewertungsfunktion (bzw. die Rahmenbedingungen, in denen die Bewertung stattfindet) ungewiss ist. D.h. man muss zwischendurch ausprobieren, ob es wirklich (besser) funktioniert. Z.B. das veränderte Geschäftsmodell. Oder, ob das neu entwickelte Faltrad tatsächlich am Markt ankommt.
Was mir klar ist: Einerseits gibt es häufig verschiedene Kriterien, die man verbessern möchte, allen gleichzeig kann man in der Regel nicht gerecht werden. Aber hier würde ich wie gesagt nicht von Optimierung sprechen.
Man kann denen schon gerecht werden. Teilweise kommt dann ein Kompromiss raus, teilweise eine Spezialisierung. In der Evolution wurden z.B. unterschiedliche Nischen besetzt. Z.B. Vögel. Gleichzeitig auch ein Beispiel für Kompromiss: die Leichtbauweise der Knochen. Also Kompromiss aus Gewicht und Stabilität. Dahinter stand jeweils ein langer Optimierungsprozess.
Du listest sehr schön auf, wo ich den Begriff der Optimierung als ziemlich deplaziert betrachte. Ein Geschäftsmodell kann ich nicht optimieren. Ein Geschäftsmodell ist ein theoretisches Konzept, welches Dinge beinhaltet, die per se erstmal gar nicht in Zahlen abzubilden sind.
Das sind genau die Anwendungsbereiche, die den Begriff Optimierung verwenden und für die das auch gedacht ist. Es geht um Komplexität und Ungewissheit. In Zahlen abzubilden ist ein Geschäftsmodell sehr wohl, eben verbunden mit Ungewissheit. Man muss es dann irendwann austesten, um das zu verifizieren. Dann optimiert man weiter.
Natürliche Evolution ist im besten Sinne ein dynamischer Prozess, keine Optimierung ...
Natürliche Evolution ist das Paradebeispiel eines Optimierungsprozesses schlechthin. Davon hat man sich die ganzen Methoden (u.A. genetische Such-Algorithmen) ja abgeschaut.
(man beachte übrigens die tautologie in der ganzen Geschichte -> Was gilt als "besser angepasst"? Na letztlich dass, was überlebt hat. Und was überlebt? Na das was "besser angepasst" ist. So kann man die Theorie überhaupt nicht widerlegen...).
Einen Prozess kann ich auch nur hinsichtlich eines Kriteriums (und womöglich bezüglich Rahmenparameter) optimieren.
Nö, die Zielfunktion ändert sich durch die Optimierung nicht. Ob eine Konfiguration optimal ist, ist vorher wie hinterher klar.
Offensichtlich ist diese Überlegung so nicht korrekt. Du nennst ja selbst den Widerspruch.
Der Optimierungsprozess bringt, durch ständiges Ausprobieren, neue Information ein (oder macht sie explizit, je nachdem wie man das sehen möchte).
so behelfen sich Schachcomputer mit anderen Mitteln und beziehen die genannten Kriterien in irgendeiner Art und Weise mit ein. Hinsichtlich der im Schachcomputer hinterlegten Funktion ist dann der vorgeschlagene Zug optimal.
Es geht aber um Optimalität hinsichtlich des Schachspiels.

Dass ein Schach-Anfänger irgendeinen Misst ziehen wird, und dieser Zug für ihn - per Definition - der optimale war, unter seinen Rahenbedingungen, spielt da keine Rolle.
Optimal wäre nur die Funktion, die stets den "optimalen Zug" nach der abstrakten Theorie liefern würde.
An sich ja, nur gibt es diese Funktion ja nicht, es kann sie auch nicht geben. Dafür müsste man ja erst alle Kombinationen durchgehen, was eben nicht effizient geht.
Dem möchte ich entschieden widersprechen! Es gibt durchaus Optimierungsprobleme, die höchstkomplex sind, wo man das Optimum aber berechnen kann.
Siehe Kompexitätstheorie. Da ist der Begriff so definiert, dass ein Problem genau dann komplex genannt wird, wenn man das eben nicht effizient lösen kann (also kein Algorithmus mit polynomieller Laufzeit existiert).
Auch wenn ein Problem NP-vollständig ist, so mag es (auch praktisch) dennoch berechenbar sein - zumindest solange das Problem "überschaubar" klein ist.
Klar. Sowas gibt es. Ist dann aber a) nicht so interessant, weil nicht besonders schwierig, b) kann man das eigentlich nicht "optimieren" nennen, weil das eigentlich einfach ist, c) sind die wirklich interessanten Probleme eben schwierig
Das hat aber mit den Wischiwaschi-Bezeichungen wie Prozess- oder Geschäftsmodelloptimierung nichts zu tun.
Was heißt denn hier "Wischiwaschi"? Ist die Evolution auch "Wischiwaschi" weil kein klares Ziel vorhanden ist? Oder nicht sinnvoll?

derMac
Beiträge: 2072
Registriert: Di 17. Jul 2012, 16:01
Faltrad 1: Dahon Dash P18
Faltrad 2: Giant Halfway
Faltrad 3: Bike Friday Family T
Geschlecht: m
Geburtsjahr: 1970
Status: FALTradfahrer
Wohnort: Grünes Herz Deutschlands 650 hm

Re: Was bedeutet "Optimierung"?

Beitrag von derMac » Sa 13. Sep 2014, 21:00

Pibach hat geschrieben:Ist die Evolution auch "Wischiwaschi" weil kein klares Ziel vorhanden ist? Oder nicht sinnvoll?
Die Evolution ist weder "Wischiwaschi", noch sinnvoll, noch sonst irgendwas. Sie ist auch keine Optimierung (die von ihr "erzeugte" Vielfalt ist viel zu groß als dass man da von einem Optimum reden könnte). Sie ist einfach. Es ist auch nicht nur kein klares Ziel vorhanden, es ist überhaupt kein Ziel vorhanden, nicht mal ein extrem verschwommenes.

Mac

EmilEmil
Beiträge: 1520
Registriert: So 17. Okt 2010, 10:50
Faltrad 1: 20" Falter
Faltrad 2: 24" Falter
Faltrad 3: FittiCROSSO
Geschlecht: m
Status: FALTradfahrer
Wohnort: Beikonstanze

Re: Was bedeutet "Optimierung"?

Beitrag von EmilEmil » So 14. Sep 2014, 13:50

Die ganze Diskussion bleibt bisher nach meiner Auffassung zu sehr dem "Semantischen" , also der sprachlichen Ausdeutung des Wortes "Optimierung" verhaftet.
Die Wesentlichen Punkte jeder Optimierung sind aber nicht von den Nebenbedingungungen zu trennen (Der Begriff ist bisher noch nicht gefallen). Die Nebenbedingungen haben im Allgemeinen restriktiven Charakter (Sie schränken den Wertebereich gewisser Variablen ein) und werden daher auch häufig als Restriktionen bezeichnet. Natürlich muß das Ziel einer jeden Optimierung definiert sein und möglichst durch eine (mathematische) Zielfunktion beschrieben werden können. Der Begriff Zielfunktion wurde schon in die Diskussion eingeführt.
Je nach Restriktion kann das Optimmum trotz gleicher Zielfunktion einen anderen Wert besitzen.
Ein typisches Beispiel dafür ist die Gewichtsrestriktion bei einem Faltrad:
Läßt man konstruktive Veränderungen, sei es durch verfeinerte Bauweise (ZB Konifizierung von Rohren oder den Einsatz von leichterem Material) mal außen vor, so kann die Gewichtsreduzierung für einen gewieften Radschrauber durch einen Austausch mit am Markt erhältlichen (leichten) Teilen erfolgen (Den trivialen Fall durch Weglassen von Teilen mag ich hier nicht behandeln). Trotz gleicher Zielfunktion (geringes Gewicht) können bei verschiedenen Restriktionen durch mögliches Budget (ZB 500€,1000 €, 2000€,....) verschiedene Optima erzeugt werden (Die werden dann auch erreicht !).
Durch die Ausweitung des Budgets sind weitere Optima möglich.
Da der Gang einer Konstruktion am Anfang immer von einer angestrebten Funktion (Mechanischer Prototyp) ausgeht, kann nach Sicherstellung der Funktion ein Optimierungs-Prozeß bezüglich weiterer Ziele eingeleitet werden. Von diesen Zielen wurde das geringe Gewicht schon genannt. Dessen Abhängigkeit von dem vorhandenen Budget (Kosten) wurde auch erwähnt.
Die überaus wichtigen Herstellungskosten will ich als weiteren (eigenständigen) Punkt einer Optimierung herausstellen.
Denn es nutzt am Ende nichts, ein tolles Faltrad zu bauen, das sich niemand leisten kann oder will.
Da es in der Praxis häufig vorkommt, daß sich bestimmte Zielfunktionen einander widersprechen. müssen durch eine Gewichtung Prioritäten gesetzt werden: Als Beispiel sei der Einsatz einer Getriebenabe oder einer Kettenschaltung erwähnt: Der Zielkonflikt besteht (u.a.) in der Wartungs-Armut einerseits und in dem größeren Gewicht andererseits.
In Punkto Wartungs-Armut sei die Getriebe-Nabe mit einem gekapselten Kettentrieb (bedingt verschiebbares Ausfallende oder Exzenter-Tretlager) ausrüstbar und werde mit einer 2x10 Kettenschaltung (Mtb-Shadow-Schaltwerk und Umwerfer) als Alternative konfrontiert. Das Mehrgewicht der Nabe dürfte etwa bei 800 [g] liegen. Hier kann nur eine Gewichtung des Käufers entscheiden, was für ihn sinnvoller (das "Optimum" ?) darstellt.
Wenn jemand die Meinung hat, daß eine haltbare (gekapselte) Kette ( 20 000 [km] gegen 2000 [km] ?) das Wichtigste ist , so wird er das sogar als Ausschluß-Restriktion (Umgangssprachlich "KO-Kriterium") verwenden und eine Kettenschaltung ausschließen. Wenn aber geringes Gewicht für jemandem das Wichtigste ist, wird er für die Kettenschaltung votieren.

MfG EmilEmil

ladiaar
Beiträge: 84
Registriert: Mo 3. Mär 2014, 20:12
Faltrad 1: BF Pocket Llama
Geschlecht: m
Status: FALTradfahrer

Re: Was bedeutet "Optimierung"?

Beitrag von ladiaar » So 14. Sep 2014, 14:35

EmilEmil hat geschrieben:Die ganze Diskussion bleibt bisher nach meiner Auffassung zu sehr dem "Semantischen" , also der sprachlichen Ausdeutung des Wortes "Optimierung" verhaftet.
Das ist aber schlicht weil das Thema ein rein semantisches ist (deswegen wurde das Thema ja abgespaltet). Darf man "Optimierung" sagen wenn man kein absolutes Optimum gefunden hat (bzw. nicht einmal sicher ist, dass dieses existiert)?

(Man könnte gleichermaßen diskutieren ob es "falsch" ist "Schraubenzieher" zu sagen wenn doch alle wissen was gemeint ist...)
EmilEmil hat geschrieben: Die Wesentlichen Punkte jeder Optimierung sind aber nicht von den Nebenbedingungungen zu trennen (Der Begriff ist bisher noch nicht gefallen).
Randbedingungen aber, und das ist in dem Kontext so ziemlich das Selbe. Könnte man natürlich auch eine semantische Diskussion drüber führen. :D

Antworten